Integral Trigonometri
Integral Trigonometri merupakan hasil kebalikan dari turunan trigonometri. Sebelum kita mencoba mengingat rumus-rumus integral triogonometri maka sebaiknya kita ingat dulu turunan trigonometri. Turunan trigonometri bisa kita tuliskan sebagai berikut
y = sin x maka y' = cos x
y = cos x maka y' = - sin x
y = tan x maka y' = sec2 x
y = cot x maka y' = -csc2 x
y = sec x maka y' = sec x tan x
y = csc x maka y' = -csc x cot x
Dengan demikian jika rumus-rumus ini kita balik akan menjadi






Rumus-rumus tersebut bisa dibuat lebih umum sebagai berikut






Untuk lebih jelasnya kita bisa membuktikan sebagai berikut
misalkan : y = ax + b
maka

Jadi :











y = sin x maka y' = cos x
y = cos x maka y' = - sin x
y = tan x maka y' = sec2 x
y = cot x maka y' = -csc2 x
y = sec x maka y' = sec x tan x
y = csc x maka y' = -csc x cot x
Dengan demikian jika rumus-rumus ini kita balik akan menjadi
Rumus-rumus tersebut bisa dibuat lebih umum sebagai berikut
Untuk lebih jelasnya kita bisa membuktikan sebagai berikut
misalkan : y = ax + b
maka
Jadi :
Komentar
sites? I have a blog based on the same information you
discuss and would really like to have you share some stories/information.
I know my
visitors would value your work. If you are even remotely interested, feel
free to
shoot me an email.
Feel free to visit my homepage ... epicenes
doesnt disappoint me as a
lot as this one. I imply, I know it was my choice to learn, but I
really thought youd have one thing interesting to say.
All I
hear is a bunch of whining about something that you possibly
can fix in case you werent too busy in search of attention.
My weblog ... www.pht-wiki.tsn.at
don’t know if I see all of them heart to heart.
There's some validity however I will take maintain opinion until I look into it
further. Good article , thanks and we wish extra! Added to FeedBurner as
nicely
My web page : dialogandoea.rejuma.org.br
lot about this, like you wrote the e-book in it or something.
I
think that you could do with some percent to
force the message house a little bit, however instead of
that,
this is wonderful blog. A fantastic read. I'll certainly be back.
Look at my blog post :: fishing trips Spain
уou ever run іnto any iѕsueѕ of plagorism or cοpyright іnfrіngement?
My site has a lot of cοmplеtely unique content
Ι've either authored myself or outsourced but it appears a lot of it is popping it up all over the internet without my authorization. Do you know any techniques to help stop content from being stolen? I'd
certainlу aρprеciate it.
Hаve a look аt my wеb blog V2 Cigs Reviews
He was totally right. This post actually made my daу.
You сann't imagine simply how much time I had spent for this info! Thanks!
Stop by my web site forum.supernatural-investigations-team.com
my wеb blog: super beta prostate
I'll go ahead and bookmark your site to come back later on. All the best
Feel free to surf to my site :: click for source
Αlso visit mу wеb page - http://Phpfox.Viewmix.tv
our site. Keеp uρ the gгеat writing.
Hеre is my web blοg - http://www.prweb.com/releases/silkn/sensepilreview/prweb10193901.htm
it is kept.
Feel free to surf to my blog post flex belt review