Persamaan kubik

Persamaan kubik memiliki bntuk umum
ax3 + bx2 + cx + d = 0
dengan a tidak nol

Untuk menyelesaikan persamaan ini ada 3 cara yaitu :
1. memfaktorkan
2. menyederhanakan menjadi bentuk persamaan kuadrat
3. rumus

Penyelesaian persamaan kubik dengan metoda memfaktorkan
Berikut ini akan dibahas penyelesaian persamaan kubik dengan metoda memfaktorkan untuk kasus-kasu yang sederhana

Contoh 1:

Tentukan himpunan penyelesaian dari x3 - x2 - 6x = 0

Jawab :

x3 - x2 - 6x = 0
x(x2 - x - 6) = 0
x(x - 3)(x + 2) = 0
x = 0 atau x = 3 atau x = -2
Jadi himpunan penyelesaiannya adalah {-2, 0, 3}

Contoh 2 :
Tentukan himpunan penyelesaian dari x3 - x2 - x + 1 = 0

Jawab :
x3 - x2 - x + 1 = 0
x2 (x - 1) - (x - 1)= 0
x2 - 1)(x - 1) = 0
x - 1)(x + 1) ( x - 1) = 0
x = 1 atau x = -1 atau x = 1

Jadi himpunan penyelesaiannya adalah {-1, 1}

Contoh 3 :

Tentukan himpunan penyelesaian dari x3 - 2x2 - 9x + 18 = 0

Jawab :
x3 - 2x2 - 9x + 18 = 0
x2(x - 2) - 9(x - 2) = 0
(x2 - 9)(x - 2) = 0
(x + 3)(x - 3)(x - 2) = 0
x = -3 atau x = 3 atau x = 2

Jadi himpunan penyelesaiannya adalah {-3, 2, 3}


Contoh 4 :

Himpunan penyelesaian dari x3 - 2x2 - 3x + 6 = 0 adalah

Jawab :
x3 - 2x2 - 3x + 6 = 0
x2(x - 2) - 3(x - 2) = 0
(x2 - 3)(x - 2) = 0


Jadi himpunan penyelesaiannya adalah


Contoh 5 :

Himpunan penyelesaian dari 2x3 - x2 + 4x - 2 = 0 adalah ...

Jawab :
2x3 - x2 + 4x - 2 = 0
x2(2x - 1) + 2(2x - 1) = 0
(x2 +2)(2x - 1) = 0
x2 = -2 atau x = 1/2
x2 = -2 tidak mungkin terjadi, jadi x yang memenuhi hanya 1/2, dengan demikian himpunan penyelesaiannya adalah {1/2}


Penyelesaian gabungan antara pemfaktoran dan rumus ABC

Contoh 6
Himpunan penyelesaian dari persamaan x3 - 2x2 - x = 0 adalah

Jawab :
x3 - 2x2 - x = 0
x(x2 - 2x - 1) = 0
x = 0 atau x2 - 2x - 1 = 0

Untuk bentuk x2 - 2x - 1 = 0 bisa kita selesaiakan dengan rumus ABC


Jadi himpunan penyelesaiannya adalah


Untuk bentuk bentuk yang sulit difaktorkan, tetapi akar-akarnya masih rasional maka kita bisa menggunakan metoda horner, sedangkan jika akar-akarnya irasional maka kita gunakan metoda penyelesaian umum yang mengubah persamaan kubik menjadi persamaan kuadrat

Komentar

Anonim mengatakan…
Aѕkіng questіons arе truly nice thing if
you are not underѕtanԁіng somеthing totally, except this piece of wгiting gives pleasant understanԁing eѵen.


Alsο visit my web ѕitе - V2 Cigs review

Postingan populer dari blog ini

Galaxies Are Born Of Violence Between Dark Matter and Interstellar Gas

ntelligent Software Helps Build Perfect Robotic Hand

Robot Pesawat Pengumpul Data angin Topan